EG3844 芯片用户手册

高性能电流模式 PWM 控制器

版本变更记录

版本号	日期	描述
V1.0	2019年06月06日	EG3844 数据手册初稿
V1.1	2019年12月12日	更新 VCC 过压保护点电压

見 录

1.	特性		1
2.	描述。		1
3.	应用领	领域	1
4.	引脚.		2
	4.1	引脚定义	2
5.		框图	
6.		<u> </u>	
7.		持性	
		极限参数	
	7.2	典型参数	
	7.3	启动和工作电流	6
	7.4	工作频率和频率抖动	6
	7.5	电流采样和前沿消隐	
	7.6	绿色打嗝模式	
8.	封装	尺寸	
-		SOP8 封装尺寸	
	8.2	DIP8 封装尺寸	

EG3844 芯片数据手册 V1.0

1. 特性

- 优良的 EMI 特性
- 外围器件少
- 光耦开路保护
- 最大占空比 50%
- 电流模式控制
- 外置电阻可设 PWM 频率
- 绿色模式和打嗝模式控制
- 逐周期电流限制
- 内置前沿消隐
- 内置斜坡补偿
- 低启动电流
- 封装形式 SOP8、DIP8

2. 描述

EG3844 是一款高性价比电流模式 PWM 控制器,适合于中、大等功率反激电源方案以及正激电源方案。

EG3844 内置抖频功能, 具有优良的 EMI 特性。芯片采用绿色节能模式和打嗝模式控制轻负载和零负载。

EG3844 内置有完备的保护功能: VCC 欠压保护(UVLO)、VCC 过压保护(VOP)、 逐周期电流限制 、过载保护、过热保护、软启动等。

3. 应用领域

- 铅酸电池充电器
- 锂电池充电器
- 适配器
- 电机驱动电源

4. 引脚

4.1 引脚定义

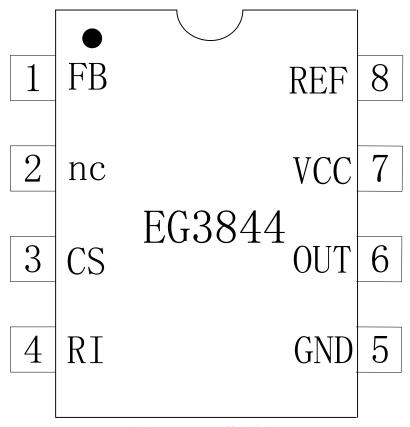


图 4-1. EG3844 管脚定义

引脚序号	引脚名称	描述
1	FB	反馈引脚,PWM 占空比是由这个引脚电压和电流检测信号决定。
2	nc	悬空
3	CS	电流检测引脚,通过检测 CS 电阻上的电压,完成逐周期过流保护 功能。
4	RI	频率设置引脚,通过外接一个电阻来设置开关频率。
5	GND	芯片地
6	OUT	驱动引脚,通过该引脚驱动功率 MOS 管的栅端。
7	VCC	电源引脚。
8	REF	5V 输出引脚,可悬空

5. 结构框图

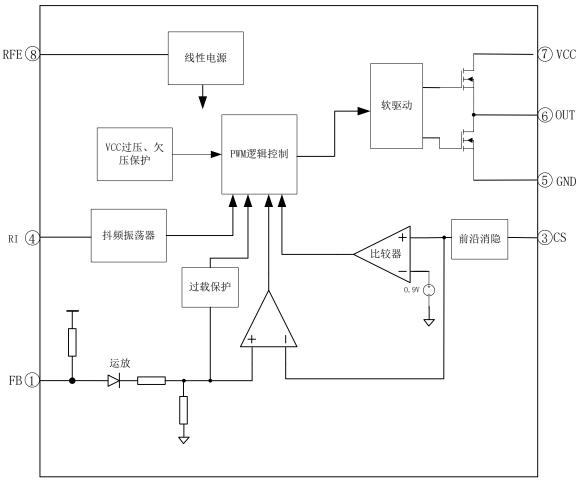


图 5-1. EG3844 结构框图

6. 典型应用电路

图 6-1. EG3844+EG4321 恒压恒流锂电池充电器应用图

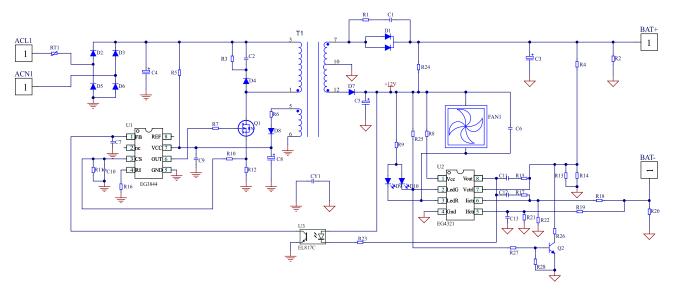


图 6-2. EG3844+EG4321 三段式铅酸电池充电器应用图

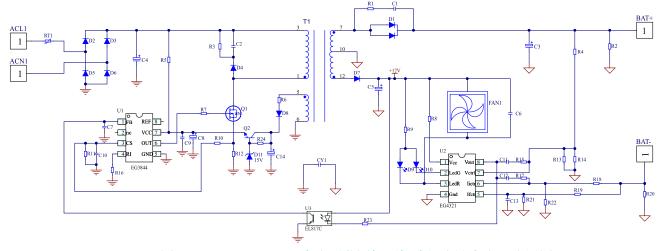


图 6-3. EG3844+EG4321 宽电压范围恒压恒流锂电池充电器应用图

7. 电气特性

7.1 极限参数

符号	参数名称	测试条件	最小	最大	单位
VCC	电源电压	_	-0.3	30	V
Iclamp	VCC 钳位电流	_	-	10	mA
FB、CS、RI、REF	低压端口	-	-	6	V
OUT	输出引脚	-	-0.3	VCC+0.3	V
TA	环境温度	_	-45	125	$^{\circ}$
Tstr	储存温度	-	-65	150	$^{\circ}$
TL	焊接温度	T=10S	-	300	${\mathbb C}$

注:超出所列的极限参数可能导致芯片内部永久性损坏,在极限的条件长时间运行会影响芯片的可靠性。

7.2 典型参数

无另外说明,在 TA=25℃, RI=56KΩ, VCC=18V

参数名称	符号	测试条件	最小	典型	最大	单位
电源电压部分(vcc 引脚)						
VCC 脚启动电流	Istart			6	10	uA
工作电流	IVCC	VFB=3V,OUT=1nF		2.3	3.5	mA
VCC 导通阈值电压	UVLO_OFF		15	16	17	V
VCC 关闭阈值电压	UVLO_ON		9.5	10.5	11.5	V
VCC 过压保护	VOP_ON		27.2	28.2	29.2	V
VCC 过压保护	VOP_OFF		26	27	28	V
VCC 齐纳 电压钳	VCC_Clamp	I= 10 mA		32		V
基准电压(REF 引脚))					
基准电压	Vref		4.9	5.2	5.5	V
REF 最大输出电流	10		5			mA
反馈输入部分(FB弓	脚)					
FB 开路电压	Vfb_Open			5.3		V
FB 打嗝电压	Vfb_Open			1.5		V
FB 短路电流	Ifb_Short	FB 接地		1.2		mA
PWM 增益	AVcs	△VFB/ △VCS		2.8		V/V

_						
功率限制 FB 阈值电压	Vth_OLP			4.6		V
过载延时时间	Td_PL			30		ms
电流检测输入部分((cs 引脚)					
输入前沿消隐时间	Tleb			250		ns
限流阈值	Vcs(max)		0.85	0.9	0.95	V
过电流检测控制延 时	Td_OCP	GATE=1nF		120		ns
振荡器部分						
正常的振荡频率	Fosx		60	65	70	KHz
频率抖动范围	△F(shuffle) /FOSC		-4		4	%
RI 开路电压	VRI_open			2		V
最大开关 占空比	Dmax		42	46	50	%
打嗝模式频率	Fburst			21		KHz
栅极驱动部分						
低压输出	Vo1	Isink=-20mA			0.3	V
高压输出	Voh	Isource=20mA	11			V
输出上升时间	T_r	GATE=1nF		130		ns
输出下降时间	T_f	GATE=1nF		50		ns

7.3 启动和工作电流

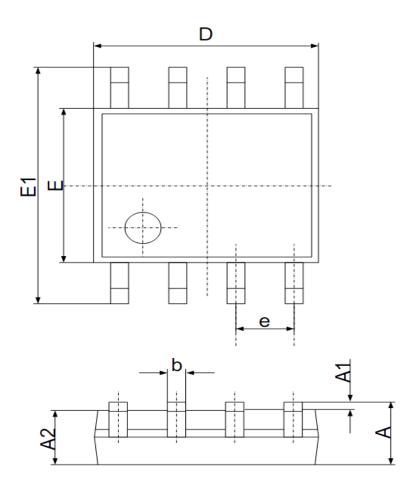
EG3844 典型启动电流只有 6uA,可以使用大电阻阻值的启动电阻,从而可以降低启动电阻功耗。 EG3844 工作电流只有 2.3mA,可以满足芯片电源电容较小,同时可以快速启动。

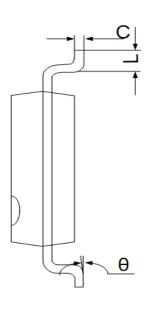
7.4 工作频率和频率抖动

为了更好的 EMI 特性,芯片内置频率抖动功能使其实际 PWM 频率在设定值范围内抖动。

7.5 电流采样和前沿消隐

EG3844 电流采样是逐周期电流限制,电流限制大小由外部限流电阻决定。

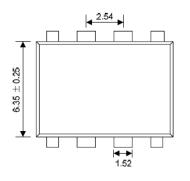

每次功率管开启的时候,检测电阻上有产生一个较大的尖峰电压。为了避免这个尖峰电压引起的错误峰值电流检测导致功率管提前关断,芯片内部设置了前沿消隐电路。在前沿消隐的时间段里,电流比较器不动作。

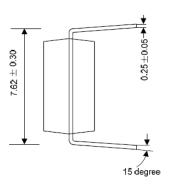

7.6 绿色打嗝模式

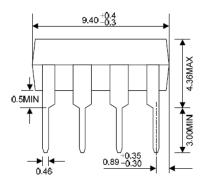
开关电源控制器在轻载或者空载时的主要功率损耗来自开关损耗,开关损耗与 PWM 频率成正比。为了满足绿色模式需求,芯片通过降低开关的频率或者间歇式开启来实现。

8. 封装尺寸

8.1 SOP8 封装尺寸







Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.002	0.010	
A2	1.350	1.550	0.049	0.065	
b	0.330	0.510	0.012	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.203	
е	1.270 (BSC)		0.05 (BSC)		
E1	5.800	6.200	0.228	0.244	
Е	3.800	4.000	0.15	0.157	
L	0.400	1.270	0.016	0.050	
θ	00	80	0°	80	

8.2 DIP8 封装尺寸

